Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 145 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Large Language Model (LLM) for Standard Cell Layout Design Optimization (2406.06549v1)

Published 24 May 2024 in cs.AR and cs.AI

Abstract: Standard cells are essential components of modern digital circuit designs. With process technologies advancing toward 2nm, more routability issues have arisen due to the decreasing number of routing tracks, increasing number and complexity of design rules, and strict patterning rules. The state-of-the-art standard cell design automation framework is able to automatically design standard cell layouts in advanced nodes, but it is still struggling to generate highly competitive Performance-Power-Area (PPA) and routable cell layouts for complex sequential cell designs. Consequently, a novel and efficient methodology incorporating the expertise of experienced human designers to incrementally optimize the PPA of cell layouts is highly necessary and essential. High-quality device clustering, with consideration of netlist topology, diffusion sharing/break and routability in the layouts, can reduce complexity and assist in finding highly competitive PPA, and routable layouts faster. In this paper, we leverage the natural language and reasoning ability of LLM to generate high-quality cluster constraints incrementally to optimize the cell layout PPA and debug the routability with ReAct prompting. On a benchmark of sequential standard cells in 2nm, we demonstrate that the proposed method not only achieves up to 19.4% smaller cell area, but also generates 23.5% more LVS/DRC clean cell layouts than previous work. In summary, the proposed method not only successfully reduces cell area by 4.65% on average, but also is able to fix routability in the cell layout designs.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper: