Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Large Language Model (LLM) for Standard Cell Layout Design Optimization (2406.06549v1)

Published 24 May 2024 in cs.AR and cs.AI

Abstract: Standard cells are essential components of modern digital circuit designs. With process technologies advancing toward 2nm, more routability issues have arisen due to the decreasing number of routing tracks, increasing number and complexity of design rules, and strict patterning rules. The state-of-the-art standard cell design automation framework is able to automatically design standard cell layouts in advanced nodes, but it is still struggling to generate highly competitive Performance-Power-Area (PPA) and routable cell layouts for complex sequential cell designs. Consequently, a novel and efficient methodology incorporating the expertise of experienced human designers to incrementally optimize the PPA of cell layouts is highly necessary and essential. High-quality device clustering, with consideration of netlist topology, diffusion sharing/break and routability in the layouts, can reduce complexity and assist in finding highly competitive PPA, and routable layouts faster. In this paper, we leverage the natural language and reasoning ability of LLM to generate high-quality cluster constraints incrementally to optimize the cell layout PPA and debug the routability with ReAct prompting. On a benchmark of sequential standard cells in 2nm, we demonstrate that the proposed method not only achieves up to 19.4% smaller cell area, but also generates 23.5% more LVS/DRC clean cell layouts than previous work. In summary, the proposed method not only successfully reduces cell area by 4.65% on average, but also is able to fix routability in the cell layout designs.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com