Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

TSB: Tiny Shared Block for Efficient DNN Deployment on NVCIM Accelerators (2406.06544v2)

Published 8 May 2024 in cs.AR and cs.AI

Abstract: Compute-in-memory (CIM) accelerators using non-volatile memory (NVM) devices offer promising solutions for energy-efficient and low-latency Deep Neural Network (DNN) inference execution. However, practical deployment is often hindered by the challenge of dealing with the massive amount of model weight parameters impacted by the inherent device variations within non-volatile computing-in-memory (NVCIM) accelerators. This issue significantly offsets their advantages by increasing training overhead, the time and energy needed for mapping weights to device states, and diminishing inference accuracy. To mitigate these challenges, we propose the "Tiny Shared Block (TSB)" method, which integrates a small shared 1x1 convolution block into the DNN architecture. This block is designed to stabilize feature processing across the network, effectively reducing the impact of device variation. Extensive experimental results show that TSB achieves over 20x inference accuracy gap improvement, over 5x training speedup, and weights-to-device mapping cost reduction while requiring less than 0.4% of the original weights to be write-verified during programming, when compared with state-of-the-art baseline solutions. Our approach provides a practical and efficient solution for deploying robust DNN models on NVCIM accelerators, making it a valuable contribution to the field of energy-efficient AI hardware.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.