Robust Distribution Learning with Local and Global Adversarial Corruptions (2406.06509v2)
Abstract: We consider learning in an adversarial environment, where an $\varepsilon$-fraction of samples from a distribution $P$ are arbitrarily modified (global corruptions) and the remaining perturbations have average magnitude bounded by $\rho$ (local corruptions). Given access to $n$ such corrupted samples, we seek a computationally efficient estimator $\hat{P}n$ that minimizes the Wasserstein distance $\mathsf{W}_1(\hat{P}_n,P)$. In fact, we attack the fine-grained task of minimizing $\mathsf{W}_1(\Pi# \hat{P}n, \Pi# P)$ for all orthogonal projections $\Pi \in \mathbb{R}{d \times d}$, with performance scaling with $\mathrm{rank}(\Pi) = k$. This allows us to account simultaneously for mean estimation ($k=1$), distribution estimation ($k=d$), as well as the settings interpolating between these two extremes. We characterize the optimal population-limit risk for this task and then develop an efficient finite-sample algorithm with error bounded by $\sqrt{\varepsilon k} + \rho + \tilde{O}(d\sqrt{k}n{-1/(k \lor 2)})$ when $P$ has bounded covariance. This guarantee holds uniformly in $k$ and is minimax optimal up to the sub-optimality of the plug-in estimator when $\rho = \varepsilon = 0$. Our efficient procedure relies on a novel trace norm approximation of an ideal yet intractable 2-Wasserstein projection estimator. We apply this algorithm to robust stochastic optimization, and, in the process, uncover a new method for overcoming the curse of dimensionality in Wasserstein distributionally robust optimization.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.