Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

An Improved Empirical Fisher Approximation for Natural Gradient Descent (2406.06420v2)

Published 10 Jun 2024 in cs.LG

Abstract: Approximate Natural Gradient Descent (NGD) methods are an important family of optimisers for deep learning models, which use approximate Fisher information matrices to pre-condition gradients during training. The empirical Fisher (EF) method approximates the Fisher information matrix empirically by reusing the per-sample gradients collected during back-propagation. Despite its ease of implementation, the EF approximation has its theoretical and practical limitations. This paper investigates the inversely-scaled projection issue of EF, which is shown to be a major cause of its poor empirical approximation quality. An improved empirical Fisher (iEF) method is proposed to address this issue, which is motivated as a generalised NGD method from a loss reduction perspective, meanwhile retaining the practical convenience of EF. The exact iEF and EF methods are experimentally evaluated using practical deep learning setups. Optimisation experiments show that applying exact iEF directly as an optimiser provides strong convergence and generalisation. Additionally, under a novel empirical evaluation framework, the proposed iEF method shows consistently better approximation quality to exact Natural Gradient updates than both the EF and the more expensive sampled Fisher methods, meanwhile demonstrating the superior property of being robust to the choice of damping across tasks and training stages. Improving existing approximate NGD optimisers with iEF is expected to lead to better convergence and robustness. Furthermore, the iEF method also serves as a better approximation method to the Fisher information matrix itself, which enables the improvement of a variety of Fisher-based methods, not limited to the scope of optimisation.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.