Papers
Topics
Authors
Recent
2000 character limit reached

Optimisation of federated learning settings under statistical heterogeneity variations (2406.06340v1)

Published 10 Jun 2024 in cs.LG and cs.AI

Abstract: Federated Learning (FL) enables local devices to collaboratively learn a shared predictive model by only periodically sharing model parameters with a central aggregator. However, FL can be disadvantaged by statistical heterogeneity produced by the diversity in each local devices data distribution, which creates different levels of Independent and Identically Distributed (IID) data. Furthermore, this can be more complex when optimising different combinations of FL parameters and choosing optimal aggregation. In this paper, we present an empirical analysis of different FL training parameters and aggregators over various levels of statistical heterogeneity on three datasets. We propose a systematic data partition strategy to simulate different levels of statistical heterogeneity and a metric to measure the level of IID. Additionally, we empirically identify the best FL model and key parameters for datasets of different characteristics. On the basis of these, we present recommended guidelines for FL parameters and aggregators to optimise model performance under different levels of IID and with different datasets

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: