Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Memory Complexity of Estimating Entropy and Mutual Information (2406.06312v3)

Published 10 Jun 2024 in cs.IT and math.IT

Abstract: We observe an infinite sequence of independent identically distributed random variables $X_1,X_2,\ldots$ drawn from an unknown distribution $p$ over $[n]$, and our goal is to estimate the entropy $H(p)=-\mathbb{E}[\log p(X)]$ within an $\varepsilon$-additive error. To that end, at each time point we are allowed to update a finite-state machine with $S$ states, using a possibly randomized but time-invariant rule, where each state of the machine is assigned an entropy estimate. Our goal is to characterize the minimax memory complexity $S*$ of this problem, which is the minimal number of states for which the estimation task is feasible with probability at least $1-\delta$ asymptotically, uniformly in $p$. Specifically, we show that there exist universal constants $C_1$ and $C_2$ such that $ S* \leq C_1\cdot\frac{n (\log n)4}{\varepsilon2\delta}$ for $\varepsilon$ not too small, and $S* \geq C_2 \cdot \max {n, \frac{\log n}{\varepsilon}}$ for $\varepsilon$ not too large. The upper bound is proved using approximate counting to estimate the logarithm of $p$, and a finite memory bias estimation machine to estimate the expectation operation. The lower bound is proved via a reduction of entropy estimation to uniformity testing. We also apply these results to derive bounds on the memory complexity of mutual information estimation.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com