Computationally Efficient Machine-Learning-Based Online Battery State of Health Estimation (2406.06151v1)
Abstract: A key function of battery management systems (BMS) in e-mobility applications is estimating the battery state of health (SoH) with high accuracy. This is typically achieved in commercial BMS using model-based methods. There has been considerable research in developing data-driven methods for improving the accuracy of SoH estimation. The data-driven methods are diverse and use different machine-learning (ML) or AI based techniques. Complex AI/ML techniques are difficult to implement in low-cost microcontrollers used in BMS due to the extensive use of non-linear functions and large matrix operations. This paper proposes a computationally efficient and data-lightweight SoH estimation technique. Online impedance at four discrete frequencies is evaluated to derive the features of a linear regression problem. The proposed solution avoids complex mathematical operations and it is well-suited for online implementation in a commercial BMS. The accuracy of this method is validated on two experimental datasets and is shown to have a mean absolute error (MAE) of less than 2% across diverse training and testing data.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.