Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Texture Re-scalable Universal Adversarial Perturbation (2406.06089v1)

Published 10 Jun 2024 in cs.CV

Abstract: Universal adversarial perturbation (UAP), also known as image-agnostic perturbation, is a fixed perturbation map that can fool the classifier with high probabilities on arbitrary images, making it more practical for attacking deep models in the real world. Previous UAP methods generate a scale-fixed and texture-fixed perturbation map for all images, which ignores the multi-scale objects in images and usually results in a low fooling ratio. Since the widely used convolution neural networks tend to classify objects according to semantic information stored in local textures, it seems a reasonable and intuitive way to improve the UAP from the perspective of utilizing local contents effectively. In this work, we find that the fooling ratios significantly increase when we add a constraint to encourage a small-scale UAP map and repeat it vertically and horizontally to fill the whole image domain. To this end, we propose texture scale-constrained UAP (TSC-UAP), a simple yet effective UAP enhancement method that automatically generates UAPs with category-specific local textures that can fool deep models more easily. Through a low-cost operation that restricts the texture scale, TSC-UAP achieves a considerable improvement in the fooling ratio and attack transferability for both data-dependent and data-free UAP methods. Experiments conducted on two state-of-the-art UAP methods, eight popular CNN models and four classical datasets show the remarkable performance of TSC-UAP.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.