Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Efficient k-Nearest-Neighbor Machine Translation with Dynamic Retrieval (2406.06073v1)

Published 10 Jun 2024 in cs.CL

Abstract: To achieve non-parametric NMT domain adaptation, $k$-Nearest-Neighbor Machine Translation ($k$NN-MT) constructs an external datastore to store domain-specific translation knowledge, which derives a $k$NN distribution to interpolate the prediction distribution of the NMT model via a linear interpolation coefficient $\lambda$. Despite its success, $k$NN retrieval at each timestep leads to substantial time overhead. To address this issue, dominant studies resort to $k$NN-MT with adaptive retrieval ($k$NN-MT-AR), which dynamically estimates $\lambda$ and skips $k$NN retrieval if $\lambda$ is less than a fixed threshold. Unfortunately, $k$NN-MT-AR does not yield satisfactory results. In this paper, we first conduct a preliminary study to reveal two key limitations of $k$NN-MT-AR: 1) the optimization gap leads to inaccurate estimation of $\lambda$ for determining $k$NN retrieval skipping, and 2) using a fixed threshold fails to accommodate the dynamic demands for $k$NN retrieval at different timesteps. To mitigate these limitations, we then propose $k$NN-MT with dynamic retrieval ($k$NN-MT-DR) that significantly extends vanilla $k$NN-MT in two aspects. Firstly, we equip $k$NN-MT with a MLP-based classifier for determining whether to skip $k$NN retrieval at each timestep. Particularly, we explore several carefully-designed scalar features to fully exert the potential of the classifier. Secondly, we propose a timestep-aware threshold adjustment method to dynamically generate the threshold, which further improves the efficiency of our model. Experimental results on the widely-used datasets demonstrate the effectiveness and generality of our model.\footnote{Our code is available at \url{https://github.com/DeepLearnXMU/knn-mt-dr}.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com