Synth-SBDH: A Synthetic Dataset of Social and Behavioral Determinants of Health for Clinical Text (2406.06056v2)
Abstract: Social and behavioral determinants of health (SBDH) play a crucial role in health outcomes and are frequently documented in clinical text. Automatically extracting SBDH information from clinical text relies on publicly available good-quality datasets. However, existing SBDH datasets exhibit substantial limitations in their availability and coverage. In this study, we introduce Synth-SBDH, a novel synthetic dataset with detailed SBDH annotations, encompassing status, temporal information, and rationale across 15 SBDH categories. We showcase the utility of Synth-SBDH on three tasks using real-world clinical datasets from two distinct hospital settings, highlighting its versatility, generalizability, and distillation capabilities. Models trained on Synth-SBDH consistently outperform counterparts with no Synth-SBDH training, achieving up to 63.75% macro-F improvements. Additionally, Synth-SBDH proves effective for rare SBDH categories and under-resource constraints while being substantially cheaper than expert-annotated real-world data. Human evaluation reveals a 71.06% Human-LLM alignment and uncovers areas for future refinements.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.