Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Dual-View Approach to Classifying Radiology Reports by Co-Training (2406.05995v1)

Published 10 Jun 2024 in cs.CL, cs.AI, and cs.LG

Abstract: Radiology report analysis provides valuable information that can aid with public health initiatives, and has been attracting increasing attention from the research community. In this work, we present a novel insight that the structure of a radiology report (namely, the Findings and Impression sections) offers different views of a radiology scan. Based on this intuition, we further propose a co-training approach, where two machine learning models are built upon the Findings and Impression sections, respectively, and use each other's information to boost performance with massive unlabeled data in a semi-supervised manner. We conducted experiments in a public health surveillance study, and results show that our co-training approach is able to improve performance using the dual views and surpass competing supervised and semi-supervised methods.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.