Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximating arrival costs in distributed moving horizon estimation: A recursive method (2406.05966v1)

Published 10 Jun 2024 in eess.SY and cs.SY

Abstract: In this paper, we present a new approach to distributed moving horizon estimation for constrained nonlinear processes. The method involves approximating the arrival costs of local estimators through a recursive framework. First, distributed full-information estimation for linear unconstrained systems is presented, which serves as the foundation for deriving the analytical expression of the arrival costs for the local estimators. Subsequently, we develop a recursive arrival cost design for linear distributed moving horizon estimation. Sufficient conditions are derived to ensure the stability of the estimation error for constrained linear systems. Next, we extend the arrival cost design derived for linear systems to account for nonlinear systems, and a partition-based constrained distributed moving horizon estimation algorithm for nonlinear systems is formulated. A benchmark chemical process is used to illustrate the effectiveness and superiority of the proposed method.

Summary

We haven't generated a summary for this paper yet.