Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Chain-of-Scrutiny: Detecting Backdoor Attacks for Large Language Models (2406.05948v3)

Published 10 Jun 2024 in cs.CR and cs.AI

Abstract: LLMs, especially those accessed via APIs, have demonstrated impressive capabilities across various domains. However, users without technical expertise often turn to (untrustworthy) third-party services, such as prompt engineering, to enhance their LLM experience, creating vulnerabilities to adversarial threats like backdoor attacks. Backdoor-compromised LLMs generate malicious outputs to users when inputs contain specific "triggers" set by attackers. Traditional defense strategies, originally designed for small-scale models, are impractical for API-accessible LLMs due to limited model access, high computational costs, and data requirements. To address these limitations, we propose Chain-of-Scrutiny (CoS) which leverages LLMs' unique reasoning abilities to mitigate backdoor attacks. It guides the LLM to generate reasoning steps for a given input and scrutinizes for consistency with the final output -- any inconsistencies indicating a potential attack. It is well-suited for the popular API-only LLM deployments, enabling detection at minimal cost and with little data. User-friendly and driven by natural language, it allows non-experts to perform the defense independently while maintaining transparency. We validate the effectiveness of CoS through extensive experiments on various tasks and LLMs, with results showing greater benefits for more powerful LLMs.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube