Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Relevance Model for Threat-Centric Ranking of Cybersecurity Vulnerabilities (2406.05933v1)

Published 9 Jun 2024 in cs.CR

Abstract: The relentless process of tracking and remediating vulnerabilities is a top concern for cybersecurity professionals. The key challenge is trying to identify a remediation scheme specific to in-house, organizational objectives. Without a strategy, the result is a patchwork of fixes applied to a tide of vulnerabilities, any one of which could be the point of failure in an otherwise formidable defense. Given that few vulnerabilities are a focus of real-world attacks, a practical remediation strategy is to identify vulnerabilities likely to be exploited and focus efforts towards remediating those vulnerabilities first. The goal of this research is to demonstrate that aggregating and synthesizing readily accessible, public data sources to provide personalized, automated recommendations for organizations to prioritize their vulnerability management strategy will offer significant improvements over using the Common Vulnerability Scoring System (CVSS). We provide a framework for vulnerability management specifically focused on mitigating threats using adversary criteria derived from MITRE ATT&CK. We test our approach by identifying vulnerabilities in software associated with six universities and four government facilities. Ranking policy performance is measured using the Normalized Discounted Cumulative Gain (nDCG). Our results show an average 71.5% - 91.3% improvement towards the identification of vulnerabilities likely to be targeted and exploited by cyber threat actors. The return on investment (ROI) of patching using our policies results in a savings of 23.3% - 25.5% in annualized costs. Our results demonstrate the efficacy of creating knowledge graphs to link large data sets to facilitate semantic queries and create data-driven, flexible ranking policies.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube