Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
164 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Relevance Model for Threat-Centric Ranking of Cybersecurity Vulnerabilities (2406.05933v1)

Published 9 Jun 2024 in cs.CR

Abstract: The relentless process of tracking and remediating vulnerabilities is a top concern for cybersecurity professionals. The key challenge is trying to identify a remediation scheme specific to in-house, organizational objectives. Without a strategy, the result is a patchwork of fixes applied to a tide of vulnerabilities, any one of which could be the point of failure in an otherwise formidable defense. Given that few vulnerabilities are a focus of real-world attacks, a practical remediation strategy is to identify vulnerabilities likely to be exploited and focus efforts towards remediating those vulnerabilities first. The goal of this research is to demonstrate that aggregating and synthesizing readily accessible, public data sources to provide personalized, automated recommendations for organizations to prioritize their vulnerability management strategy will offer significant improvements over using the Common Vulnerability Scoring System (CVSS). We provide a framework for vulnerability management specifically focused on mitigating threats using adversary criteria derived from MITRE ATT&CK. We test our approach by identifying vulnerabilities in software associated with six universities and four government facilities. Ranking policy performance is measured using the Normalized Discounted Cumulative Gain (nDCG). Our results show an average 71.5% - 91.3% improvement towards the identification of vulnerabilities likely to be targeted and exploited by cyber threat actors. The return on investment (ROI) of patching using our policies results in a savings of 23.3% - 25.5% in annualized costs. Our results demonstrate the efficacy of creating knowledge graphs to link large data sets to facilitate semantic queries and create data-driven, flexible ranking policies.

Citations (1)

Summary

We haven't generated a summary for this paper yet.