Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Vision Mamba: Cutting-Edge Classification of Alzheimer's Disease with 3D MRI Scans (2406.05757v1)

Published 9 Jun 2024 in cs.CV and cs.LG

Abstract: Classifying 3D MRI images for early detection of Alzheimer's disease is a critical task in medical imaging. Traditional approaches using Convolutional Neural Networks (CNNs) and Transformers face significant challenges in this domain. CNNs, while effective in capturing local spatial features, struggle with long-range dependencies and often require extensive computational resources for high-resolution 3D data. Transformers, on the other hand, excel in capturing global context but suffer from quadratic complexity in inference time and require substantial memory, making them less efficient for large-scale 3D MRI data. To address these limitations, we propose the use of Vision Mamba, an advanced model based on State Space Models (SSMs), for the classification of 3D MRI images to detect Alzheimer's disease. Vision Mamba leverages dynamic state representations and the selective scan algorithm, allowing it to efficiently capture and retain important spatial information across 3D volumes. By dynamically adjusting state transitions based on input features, Vision Mamba can selectively retain relevant information, leading to more accurate and computationally efficient processing of 3D MRI data. Our approach combines the parallelizable nature of convolutional operations during training with the efficient, recurrent processing of states during inference. This architecture not only improves computational efficiency but also enhances the model's ability to handle long-range dependencies within 3D medical images. Experimental results demonstrate that Vision Mamba outperforms traditional CNN and Transformer models accuracy, making it a promising tool for the early detection of Alzheimer's disease using 3D MRI data.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com