Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SelfDefend: LLMs Can Defend Themselves against Jailbreaking in a Practical Manner (2406.05498v3)

Published 8 Jun 2024 in cs.CR and cs.AI

Abstract: Jailbreaking is an emerging adversarial attack that bypasses the safety alignment deployed in off-the-shelf LLMs and has evolved into multiple categories: human-based, optimization-based, generation-based, and the recent indirect and multilingual jailbreaks. However, delivering a practical jailbreak defense is challenging because it needs to not only handle all the above jailbreak attacks but also incur negligible delays to user prompts, as well as be compatible with both open-source and closed-source LLMs. Inspired by how the traditional security concept of shadow stacks defends against memory overflow attacks, this paper introduces a generic LLM jailbreak defense framework called SelfDefend, which establishes a shadow LLM as a defense instance (in detection state) to concurrently protect the target LLM instance (in normal answering state) in the normal stack and collaborate with it for checkpoint-based access control. The effectiveness of SelfDefend builds upon our observation that existing LLMs can identify harmful prompts or intentions in user queries, which we empirically validate using mainstream GPT-3.5/4 models against major jailbreak attacks. To further improve the defense's robustness and minimize costs, we employ a data distillation approach to tune dedicated open-source defense models. When deployed to protect GPT-3.5/4, Claude, Llama-2-7b/13b, and Mistral, these models outperform seven state-of-the-art defenses and match the performance of GPT-4-based SelfDefend, with significantly lower extra delays. Further experiments show that the tuned models are robust to adaptive jailbreaks and prompt injections.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com