Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Finite-Sample Identification of Linear Regression Models with Residual-Permuted Sums (2406.05440v1)

Published 8 Jun 2024 in eess.SY, cs.SY, math.ST, stat.ML, and stat.TH

Abstract: This letter studies a distribution-free, finite-sample data perturbation (DP) method, the Residual-Permuted Sums (RPS), which is an alternative of the Sign-Perturbed Sums (SPS) algorithm, to construct confidence regions. While SPS assumes independent (but potentially time-varying) noise terms which are symmetric about zero, RPS gets rid of the symmetricity assumption, but assumes i.i.d. noises. The main idea is that RPS permutes the residuals instead of perturbing their signs. This letter introduces RPS in a flexible way, which allows various design-choices. RPS has exact finite sample coverage probabilities and we provide the first proof that these permutation-based confidence regions are uniformly strongly consistent under general assumptions. This means that the RPS regions almost surely shrink around the true parameters as the sample size increases. The ellipsoidal outer-approximation (EOA) of SPS is also extended to RPS, and the effectiveness of RPS is validated by numerical experiments, as well.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets