Papers
Topics
Authors
Recent
2000 character limit reached

Finite-Sample Identification of Linear Regression Models with Residual-Permuted Sums (2406.05440v1)

Published 8 Jun 2024 in eess.SY, cs.SY, math.ST, stat.ML, and stat.TH

Abstract: This letter studies a distribution-free, finite-sample data perturbation (DP) method, the Residual-Permuted Sums (RPS), which is an alternative of the Sign-Perturbed Sums (SPS) algorithm, to construct confidence regions. While SPS assumes independent (but potentially time-varying) noise terms which are symmetric about zero, RPS gets rid of the symmetricity assumption, but assumes i.i.d. noises. The main idea is that RPS permutes the residuals instead of perturbing their signs. This letter introduces RPS in a flexible way, which allows various design-choices. RPS has exact finite sample coverage probabilities and we provide the first proof that these permutation-based confidence regions are uniformly strongly consistent under general assumptions. This means that the RPS regions almost surely shrink around the true parameters as the sample size increases. The ellipsoidal outer-approximation (EOA) of SPS is also extended to RPS, and the effectiveness of RPS is validated by numerical experiments, as well.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.