Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Human Learning about AI (2406.05408v2)

Published 8 Jun 2024 in econ.GN and q-fin.EC

Abstract: We study how people form expectations about the performance of AI and consequences for AI adoption. Our main hypothesis is that people rely on human-relevant task features when evaluating AI, treating AI failures on human-easy tasks, and successes on human-difficult tasks, as highly informative of its overall performance. In lab experiments, we show that projection of human difficulty onto AI predictably distorts subjects' beliefs and can lead to suboptimal adoption, as failing human-easy tasks need not imply poor overall performance for AI. We find evidence for projection in a field experiment with an AI giving parenting advice. Potential users strongly infer from answers that are equally uninformative but less humanly-similar to expected answers, significantly reducing trust and future engagement. Our results suggest AI "anthropomorphism" can backfire by increasing projection and de-aligning people's expectations and AI performance.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com