Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Human Learning about AI (2406.05408v2)

Published 8 Jun 2024 in econ.GN and q-fin.EC

Abstract: We study how people form expectations about the performance of AI and consequences for AI adoption. Our main hypothesis is that people rely on human-relevant task features when evaluating AI, treating AI failures on human-easy tasks, and successes on human-difficult tasks, as highly informative of its overall performance. In lab experiments, we show that projection of human difficulty onto AI predictably distorts subjects' beliefs and can lead to suboptimal adoption, as failing human-easy tasks need not imply poor overall performance for AI. We find evidence for projection in a field experiment with an AI giving parenting advice. Potential users strongly infer from answers that are equally uninformative but less humanly-similar to expected answers, significantly reducing trust and future engagement. Our results suggest AI "anthropomorphism" can backfire by increasing projection and de-aligning people's expectations and AI performance.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com