Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Efficient Centroid-Linkage Clustering (2406.05066v1)

Published 7 Jun 2024 in cs.DS

Abstract: We give an efficient algorithm for Centroid-Linkage Hierarchical Agglomerative Clustering (HAC), which computes a $c$-approximate clustering in roughly $n{1+O(1/c2)}$ time. We obtain our result by combining a new Centroid-Linkage HAC algorithm with a novel fully dynamic data structure for nearest neighbor search which works under adaptive updates. We also evaluate our algorithm empirically. By leveraging a state-of-the-art nearest-neighbor search library, we obtain a fast and accurate Centroid-Linkage HAC algorithm. Compared to an existing state-of-the-art exact baseline, our implementation maintains the clustering quality while delivering up to a $36\times$ speedup due to performing fewer distance comparisons.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.