Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

Sim-to-Real Transfer of Deep Reinforcement Learning Agents for Online Coverage Path Planning (2406.04920v2)

Published 7 Jun 2024 in cs.RO, cs.LG, cs.SY, and eess.SY

Abstract: Sim-to-real transfer presents a difficult challenge, where models trained in simulation are to be deployed in the real world. The distribution shift between the two settings leads to biased representations of the dynamics, and thus to suboptimal predictions in the real-world environment. In this work, we tackle the challenge of sim-to-real transfer of reinforcement learning (RL) agents for coverage path planning (CPP). In CPP, the task is for a robot to find a path that covers every point of a confined area. Specifically, we consider the case where the environment is unknown, and the agent needs to plan the path online while mapping the environment. We bridge the sim-to-real gap through a semi-virtual environment, including a real robot and real-time aspects, while utilizing a simulated sensor and obstacles to enable environment randomization and automated episode resetting. We investigate what level of fine-tuning is needed for adapting to a realistic setting, comparing to an agent trained solely in simulation. We find that a high inference frequency allows first-order Markovian policies to transfer directly from simulation, while higher-order policies can be fine-tuned to further reduce the sim-to-real gap. Moreover, they can operate at a lower frequency, thus reducing computational requirements. In both cases, our approaches transfer state-of-the-art results from simulation to the real domain, where direct learning would take in the order of weeks with manual interaction, that is, it would be completely infeasible.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.