Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Approximate Bayesian Computation with Deep Learning and Conformal prediction (2406.04874v4)

Published 7 Jun 2024 in stat.ME

Abstract: Approximate Bayesian Computation (ABC) methods are commonly used to approximate posterior distributions in models with unknown or computationally intractable likelihoods. Classical ABC methods are based on nearest neighbor type algorithms and rely on the choice of so-called summary statistics, distances between datasets and a tolerance threshold. Recently, methods combining ABC with more complex machine learning algorithms have been proposed to mitigate the impact of these ``user-choices''. In this paper, we propose the first, to our knowledge, ABC method completely free of summary statistics, distance, and tolerance threshold. Moreover, in contrast with usual generalizations of the ABC method, it associates a confidence interval (having a proper frequentist marginal coverage) with the posterior mean estimation (or other moment-type estimates). Our method, named ABCD-Conformal, uses a neural network with Monte Carlo Dropout to provide an estimation of the posterior mean (or other moment type functionals), and conformal theory to obtain associated confidence sets. Efficient for estimating multidimensional parameters and amortized, we test this new method on four different applications and compare it with other ABC methods in the literature.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 4 likes.

Upgrade to Pro to view all of the tweets about this paper: