Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Logic Synthesis with Generative Deep Neural Networks (2406.04699v1)

Published 7 Jun 2024 in cs.LO and cs.AI

Abstract: While deep learning has achieved significant success in various domains, its application to logic circuit design has been limited due to complex constraints and strict feasibility requirement. However, a recent generative deep neural model, "Circuit Transformer", has shown promise in this area by enabling equivalence-preserving circuit transformation on a small scale. In this paper, we introduce a logic synthesis rewriting operator based on the Circuit Transformer model, named "ctrw" (Circuit Transformer Rewriting), which incorporates the following techniques: (1) a two-stage training scheme for the Circuit Transformer tailored for logic synthesis, with iterative improvement of optimality through self-improvement training; (2) integration of the Circuit Transformer with state-of-the-art rewriting techniques to address scalability issues, allowing for guided DAG-aware rewriting. Experimental results on the IWLS 2023 contest benchmark demonstrate the effectiveness of our proposed rewriting methods.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.