Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Cooperative Meta-Learning with Gradient Augmentation (2406.04639v1)

Published 7 Jun 2024 in cs.LG, cs.AI, and cs.CV

Abstract: Model agnostic meta-learning (MAML) is one of the most widely used gradient-based meta-learning, consisting of two optimization loops: an inner loop and outer loop. MAML learns the new task from meta-initialization parameters with an inner update and finds the meta-initialization parameters in the outer loop. In general, the injection of noise into the gradient of the model for augmenting the gradient is one of the widely used regularization methods. In this work, we propose a novel cooperative meta-learning framework dubbed CML which leverages gradient-level regularization with gradient augmentation. We inject learnable noise into the gradient of the model for the model generalization. The key idea of CML is introducing the co-learner which has no inner update but the outer loop update to augment gradients for finding better meta-initialization parameters. Since the co-learner does not update in the inner loop, it can be easily deleted after meta-training. Therefore, CML infers with only meta-learner without additional cost and performance degradation. We demonstrate that CML is easily applicable to gradient-based meta-learning methods and CML leads to increased performance in few-shot regression, few-shot image classification and few-shot node classification tasks. Our codes are at https://github.com/JJongyn/CML.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets