Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Projecting Molecules into Synthesizable Chemical Spaces (2406.04628v1)

Published 7 Jun 2024 in cs.CE and q-bio.QM

Abstract: Discovering new drug molecules is a pivotal yet challenging process due to the near-infinitely large chemical space and notorious demands on time and resources. Numerous generative models have recently been introduced to accelerate the drug discovery process, but their progression to experimental validation remains limited, largely due to a lack of consideration for synthetic accessibility in practical settings. In this work, we introduce a novel framework that is capable of generating new chemical structures while ensuring synthetic accessibility. Specifically, we introduce a postfix notation of synthetic pathways to represent molecules in chemical space. Then, we design a transformer-based model to translate molecular graphs into postfix notations of synthesis. We highlight the model's ability to: (a) perform bottom-up synthesis planning more accurately, (b) generate structurally similar, synthesizable analogs for unsynthesizable molecules proposed by generative models with their properties preserved, and (c) explore the local synthesizable chemical space around hit molecules.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.