Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

llmNER: (Zero|Few)-Shot Named Entity Recognition, Exploiting the Power of Large Language Models (2406.04528v1)

Published 6 Jun 2024 in cs.CL

Abstract: LLMs allow us to generate high-quality human-like text. One interesting task in NLP is named entity recognition (NER), which seeks to detect mentions of relevant information in documents. This paper presents LLMNER, a Python library for implementing zero-shot and few-shot NER with LLMs; by providing an easy-to-use interface, LLMNER can compose prompts, query the model, and parse the completion returned by the LLM. Also, the library enables the user to perform prompt engineering efficiently by providing a simple interface to test multiple variables. We validated our software on two NER tasks to show the library's flexibility. LLMNER aims to push the boundaries of in-context learning research by removing the barrier of the prompting and parsing steps.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets