Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

High-precision and low-depth eigenstate property estimation: theory and resource estimation (2406.04307v1)

Published 6 Jun 2024 in quant-ph, cond-mat.str-el, and physics.comp-ph

Abstract: Estimating the eigenstate properties of quantum many-body systems is a long-standing, challenging problem for both classical and quantum computing. For the task of eigenstate preparation, quantum signal processing (QSP) has established near-optimal query complexity $O( \Delta{-1} \log(\epsilon{-1}) )$ by querying the block encoding of the Hamiltonian $H$ where $\Delta$ is the energy gap and $\epsilon$ is the target precision. However, QSP is challenging for both near-term noisy quantum computers and early fault-tolerant quantum computers (FTQC), which are limited by the number of logical qubits and circuit depth. To date, early FTQC algorithms have focused on querying the perfect time evolution $e{-iHt}$. It remains uncertain whether early FTQC algorithms can maintain good asymptotic scaling at the gate level. Moreover, when considering qubit connectivity, the circuit depth of existing FTQC algorithms may scale suboptimally with system size. Here, we present a full-stack design of a random sampling algorithm for estimating the eigenenergy and the observable expectations on the eigenstates, which can achieve high precision and good system size scaling. The gate complexity has a logarithmic dependence on precision $ {O}(\log{1+o(1)} (1/\epsilon))$ for generic Hamiltonians, which cannot achieved by methods using Trottersiation to realise $e{-iHt}$ like in QETU. For $n$-qubit lattice Hamiltonians, our method achieves near-optimal system size dependence with the gate complexity $O(n{1+o(1)})$. When restricting the qubit connectivity to a linear nearest-neighbour architecture, The method shows advantages in circuit depth, with $O(n{o(1)})$ for lattice models and $O(n{2+o(1)})$ for electronic structure problems. We compare the resource requirements (CNOT gates, T gates and qubit numbers) by phase estimation, QSP, and QETU, in lattice and molecular problems.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper: