Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

BEADs: Bias Evaluation Across Domains (2406.04220v5)

Published 6 Jun 2024 in cs.CL and cs.AI

Abstract: Recent advancements in LLMs have significantly improved NLP applications. However, these models often inherit biases from their training data. While several datasets exist for bias detection, most are limited to one or two NLP tasks, typically classification or evaluation, and lack comprehensive coverage across a broader range of tasks. To address this gap, we introduce the Bias Evaluations Across Domains (BEADs) dataset, designed to support a wide range of NLP tasks, including text classification, token classification, bias quantification, and benign language generation. A key contribution of this work is the gold-standard annotation provided by GPT-4 for scalability, with expert verification to ensure high reliability. BEADs can be used for both fine-tuning models (for classification and generation tasks) and evaluating LLM behavior. Our findings show that BEADs effectively surfaces various biases during model fine-tuning and helps reduce biases in language generation tasks while maintaining output quality. The dataset also highlights prevalent demographic biases in LLMs during evaluation. We release BEADs as a practical resource for detecting and mitigating bias across domains, supporting the development of responsible AI systems. Project: https://vectorinstitute.github.io/BEAD/ Data: https://huggingface.co/datasets/shainar/BEAD

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.