Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

DICE: Detecting In-distribution Contamination in LLM's Fine-tuning Phase for Math Reasoning (2406.04197v2)

Published 6 Jun 2024 in cs.CL

Abstract: The advancement of LLMs relies on evaluation using public benchmarks, but data contamination can lead to overestimated performance. Previous researches focus on detecting contamination by determining whether the model has seen the exact same data during training. Besides, prior work has already shown that even training on data similar to benchmark data inflates performance, namely \emph{In-distribution contamination}. In this work, we argue that in-distribution contamination can lead to the performance drop on OOD benchmarks. To effectively detect in-distribution contamination, we propose DICE, a novel method that leverages the internal states of LLMs to locate-then-detect the contamination. DICE first identifies the most sensitive layer to contamination, then trains a classifier based on the internal states of that layer. Experiments reveal DICE's high accuracy in detecting in-distribution contamination across various LLMs and math reasoning datasets. We also show the generalization capability of the trained DICE detector, which is able to detect contamination across multiple benchmarks with similar distributions. Additionally, we find that DICE's predictions correlate with the performance of LLMs fine-tuned by either us or other organizations, achieving a coefficient of determination ($R2$) between 0.61 and 0.75. The code and data are available at https://github.com/THU-KEG/DICE.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com