Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 174 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Enhancing Weather Predictions: Super-Resolution via Deep Diffusion Models (2406.04099v2)

Published 6 Jun 2024 in cs.LG and cs.AI

Abstract: This study investigates the application of deep-learning diffusion models for the super-resolution of weather data, a novel approach aimed at enhancing the spatial resolution and detail of meteorological variables. Leveraging the capabilities of diffusion models, specifically the SR3 and ResDiff architectures, we present a methodology for transforming low-resolution weather data into high-resolution outputs. Our experiments, conducted using the WeatherBench dataset, focus on the super-resolution of the two-meter temperature variable, demonstrating the models' ability to generate detailed and accurate weather maps. The results indicate that the ResDiff model, further improved by incorporating physics-based modifications, significantly outperforms traditional SR3 methods in terms of Mean Squared Error (MSE), Structural Similarity Index (SSIM), and Peak Signal-to-Noise Ratio (PSNR). This research highlights the potential of diffusion models in meteorological applications, offering insights into their effectiveness, challenges, and prospects for future advancements in weather prediction and climate analysis.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: