Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Weight-based Decomposition: A Case for Bilinear MLPs (2406.03947v1)

Published 6 Jun 2024 in cs.LG and cs.AI

Abstract: Gated Linear Units (GLUs) have become a common building block in modern foundation models. Bilinear layers drop the non-linearity in the "gate" but still have comparable performance to other GLUs. An attractive quality of bilinear layers is that they can be fully expressed in terms of a third-order tensor and linear operations. Leveraging this, we develop a method to decompose the bilinear tensor into a set of sparsely interacting eigenvectors that show promising interpretability properties in preliminary experiments for shallow image classifiers (MNIST) and small LLMs (Tiny Stories). Since the decomposition is fully equivalent to the model's original computations, bilinear layers may be an interpretability-friendly architecture that helps connect features to the model weights. Application of our method may not be limited to pretrained bilinear models since we find that LLMs such as TinyLlama-1.1B can be finetuned into bilinear variants.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: