Robust Deep Reinforcement Learning against Adversarial Behavior Manipulation (2406.03862v2)
Abstract: This study investigates behavior-targeted attacks on reinforcement learning and their countermeasures. Behavior-targeted attacks aim to manipulate the victim's behavior as desired by the adversary through adversarial interventions in state observations. Existing behavior-targeted attacks have some limitations, such as requiring white-box access to the victim's policy. To address this, we propose a novel attack method using imitation learning from adversarial demonstrations, which works under limited access to the victim's policy and is environment-agnostic. In addition, our theoretical analysis proves that the policy's sensitivity to state changes impacts defense performance, particularly in the early stages of the trajectory. Based on this insight, we propose time-discounted regularization, which enhances robustness against attacks while maintaining task performance. To the best of our knowledge, this is the first defense strategy specifically designed for behavior-targeted attacks.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.