Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Continual Counting with Gradual Privacy Expiration (2406.03802v1)

Published 6 Jun 2024 in cs.CR and cs.DS

Abstract: Differential privacy with gradual expiration models the setting where data items arrive in a stream and at a given time $t$ the privacy loss guaranteed for a data item seen at time $(t-d)$ is $\epsilon g(d)$, where $g$ is a monotonically non-decreasing function. We study the fundamental $\textit{continual (binary) counting}$ problem where each data item consists of a bit, and the algorithm needs to output at each time step the sum of all the bits streamed so far. For a stream of length $T$ and privacy $\textit{without}$ expiration continual counting is possible with maximum (over all time steps) additive error $O(\log2(T)/\varepsilon)$ and the best known lower bound is $\Omega(\log(T)/\varepsilon)$; closing this gap is a challenging open problem. We show that the situation is very different for privacy with gradual expiration by giving upper and lower bounds for a large set of expiration functions $g$. Specifically, our algorithm achieves an additive error of $ O(\log(T)/\epsilon)$ for a large set of privacy expiration functions. We also give a lower bound that shows that if $C$ is the additive error of any $\epsilon$-DP algorithm for this problem, then the product of $C$ and the privacy expiration function after $2C$ steps must be $\Omega(\log(T)/\epsilon)$. Our algorithm matches this lower bound as its additive error is $O(\log(T)/\epsilon)$, even when $g(2C) = O(1)$. Our empirical evaluation shows that we achieve a slowly growing privacy loss with significantly smaller empirical privacy loss for large values of $d$ than a natural baseline algorithm.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 9 likes.

Upgrade to Pro to view all of the tweets about this paper: