Adaptive Multi-Scale Decomposition Framework for Time Series Forecasting (2406.03751v2)
Abstract: Transformer-based and MLP-based methods have emerged as leading approaches in time series forecasting (TSF). While Transformer-based methods excel in capturing long-range dependencies, they suffer from high computational complexities and tend to overfit. Conversely, MLP-based methods offer computational efficiency and adeptness in modeling temporal dynamics, but they struggle with capturing complex temporal patterns effectively. To address these challenges, we propose a novel MLP-based Adaptive Multi-Scale Decomposition (AMD) framework for TSF. Our framework decomposes time series into distinct temporal patterns at multiple scales, leveraging the Multi-Scale Decomposable Mixing (MDM) block to dissect and aggregate these patterns in a residual manner. Complemented by the Dual Dependency Interaction (DDI) block and the Adaptive Multi-predictor Synthesis (AMS) block, our approach effectively models both temporal and channel dependencies and utilizes autocorrelation to refine multi-scale data integration. Comprehensive experiments demonstrate that our AMD framework not only overcomes the limitations of existing methods but also consistently achieves state-of-the-art performance in both long-term and short-term forecasting tasks across various datasets, showcasing superior efficiency. Code is available at https://github.com/TROUBADOUR000/AMD
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.