Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Post-hoc Part-prototype Networks (2406.03421v1)

Published 5 Jun 2024 in cs.CV

Abstract: Post-hoc explainability methods such as Grad-CAM are popular because they do not influence the performance of a trained model. However, they mainly reveal "where" a model looks at for a given input, fail to explain "what" the model looks for (e.g., what is important to classify a bird image to a Scott Oriole?). Existing part-prototype networks leverage part-prototypes (e.g., characteristic Scott Oriole's wing and head) to answer both "where" and "what", but often under-perform their black box counterparts in the accuracy. Therefore, a natural question is: can one construct a network that answers both "where" and "what" in a post-hoc manner to guarantee the model's performance? To this end, we propose the first post-hoc part-prototype network via decomposing the classification head of a trained model into a set of interpretable part-prototypes. Concretely, we propose an unsupervised prototype discovery and refining strategy to obtain prototypes that can precisely reconstruct the classification head, yet being interpretable. Besides guaranteeing the performance, we show that our network offers more faithful explanations qualitatively and yields even better part-prototypes quantitatively than prior part-prototype networks.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.