Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

FusionBench: A Comprehensive Benchmark of Deep Model Fusion (2406.03280v3)

Published 5 Jun 2024 in cs.LG, cs.AI, and cs.CL

Abstract: Deep model fusion is an emerging technique that unifies the predictions or parameters of several deep neural networks into a single model in a cost-effective and data-efficient manner. This enables the unified model to take advantage of the original models' strengths, potentially exceeding their performance. Although a variety of deep model fusion techniques have been introduced, their evaluations tend to be inconsistent and often inadequate to validate their effectiveness and robustness against distribution shifts. To address this issue, we introduce FusionBench, which is the first comprehensive benchmark dedicated to deep model fusion. FusionBench covers a wide range of tasks, including open-vocabulary image classification, text classification, and text-to-text generation. Each category includes up to eight tasks with corresponding task-specific models, featuring both full fine-tuning and LoRA fine-tuning, as well as models of different sizes, to ensure fair and balanced comparisons of various multi-task model fusion techniques across different tasks, model scales, and fine-tuning strategies. We implement and evaluate a broad spectrum of deep model fusion techniques. These techniques range from model ensemble methods, which combine the predictions to improve the overall performance, to model merging, which integrates different models into a single one, and model mixing methods, which upscale or recombine the components of the original models. FusionBench now contains 26 distinct tasks, 74 fine-tuned models, and 16 fusion techniques, and we are committed to consistently expanding the benchmark with more tasks, models, and fusion techniques. In addition, we offer a well-documented set of resources and guidelines to aid researchers in understanding and replicating the benchmark results. Homepage https://github.com/tanganke/fusion_bench

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube