Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

No-Regret Algorithms for Safe Bayesian Optimization with Monotonicity Constraints (2406.03264v1)

Published 5 Jun 2024 in stat.ML and cs.LG

Abstract: We consider the problem of sequentially maximizing an unknown function $f$ over a set of actions of the form $(s,\mathbf{x})$, where the selected actions must satisfy a safety constraint with respect to an unknown safety function $g$. We model $f$ and $g$ as lying in a reproducing kernel Hilbert space (RKHS), which facilitates the use of Gaussian process methods. While existing works for this setting have provided algorithms that are guaranteed to identify a near-optimal safe action, the problem of attaining low cumulative regret has remained largely unexplored, with a key challenge being that expanding the safe region can incur high regret. To address this challenge, we show that if $g$ is monotone with respect to just the single variable $s$ (with no such constraint on $f$), sublinear regret becomes achievable with our proposed algorithm. In addition, we show that a modified version of our algorithm is able to attain sublinear regret (for suitably defined notions of regret) for the task of finding a near-optimal $s$ corresponding to every $\mathbf{x}$, as opposed to only finding the global safe optimum. Our findings are supported with empirical evaluations on various objective and safety functions.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper: