Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 126 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

FAPNet: An Effective Frequency Adaptive Point-based Eye Tracker (2406.03177v1)

Published 5 Jun 2024 in cs.CV

Abstract: Eye tracking is crucial for human-computer interaction in different domains. Conventional cameras encounter challenges such as power consumption and image quality during different eye movements, prompting the need for advanced solutions with ultra-fast, low-power, and accurate eye trackers. Event cameras, fundamentally designed to capture information about moving objects, exhibit low power consumption and high temporal resolution. This positions them as an alternative to traditional cameras in the realm of eye tracking. Nevertheless, existing event-based eye tracking networks neglect the pivotal sparse and fine-grained temporal information in events, resulting in unsatisfactory performance. Moreover, the energy-efficient features are further compromised by the use of excessively complex models, hindering efficient deployment on edge devices. In this paper, we utilize Point Cloud as the event representation to harness the high temporal resolution and sparse characteristics of events in eye tracking tasks. We rethink the point-based architecture PEPNet with preprocessing the long-term relationships between samples, leading to the innovative design of FAPNet. A frequency adaptive mechanism is designed to realize adaptive tracking according to the speed of the pupil movement and the Inter Sample LSTM module is introduced to utilize the temporal correlation between samples. In the Event-based Eye Tracking Challenge, we utilize vanilla PEPNet, which is the former work to achieve the $p_{10}$ accuracy of 97.95\%. On the SEET synthetic dataset, FAPNet can achieve state-of-the-art while consuming merely 10\% of the PEPNet's computational resources. Notably, the computational demand of FAPNet is independent of the sensor's spatial resolution, enhancing its applicability on resource-limited edge devices.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.