Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Brief Announcement: Distributed Unconstrained Local Search for Multilevel Graph Partitioning (2406.03169v1)

Published 5 Jun 2024 in cs.DC and cs.DS

Abstract: Partitioning a graph into blocks of roughly equal weight while cutting only few edges is a fundamental problem in computer science with numerous practical applications. While shared-memory parallel partitioners have recently matured to achieve the same quality as widely used sequential partitioners, there is still a pronounced quality gap between distributed partitioners and their sequential counterparts. In this work, we shrink this gap considerably by describing the engineering of an unconstrained local search algorithm suitable for distributed partitioners. We integrate the proposed algorithm in a distributed multilevel partitioner. Our extensive experiments show that the resulting algorithm scales to thousands of PEs while computing cuts that are, on average, only 3.5% larger than those of a state-of-the-art high-quality shared-memory partitioner. Compared to previous distributed partitioners, we obtain on average 6.8% smaller cuts than the best-performing competitor while being more than 9 times faster.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.