Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Floorplanning with I/O assignment via feasibility-seeking and superiorization methods (2406.03165v1)

Published 5 Jun 2024 in math.OC and cs.AR

Abstract: The feasibility-seeking approach offers a systematic framework for managing and resolving intricate constraints in continuous problems, making it a promising avenue to explore in the context of floorplanning problems with increasingly heterogeneous constraints. The classic legality constraints can be expressed as the union of convex sets. In implementation, we introduce a resetting strategy aimed at effectively reducing the problem of algorithmic divergence in the projection-based method used for the feasibility-seeking formulation. Furthermore, we introduce the novel application of the superiorization method (SM) to floorplanning, which bridges the gap between feasibility-seeking and constrained optimization. The SM employs perturbations to steer the iterations of the feasibility-seeking algorithm towards feasible solutions with reduced (not necessarily minimal) total wirelength. To evaluate the performance of Per-RMAP, we conduct comprehensive experiments on the MCNC benchmarks and GSRC benchmarks. The results demonstrate that we can obtain legal floorplanning results 166 times faster than the branch-and-bound (B&B) method while incurring only a 5% wirelength increase compared to the optimal results. Furthermore, we evaluate the effectiveness of the algorithmic flow that considers the I/O assignment constraints, which achieves an 6% improvement in wirelength. Besides, considering the soft modules with a larger feasible solution space, we obtain 15% improved runtime compared with PeF, the state-of-the-art analytical method. Moreover, we compared our method with Parquet-4 and Fast-SA on GSRC benchmarks which include larger-scale instances. The results highlight the ability of our approach to maintain a balance between floorplanning quality and efficiency.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube