Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

CAPRI-FAIR: Integration of Multi-sided Fairness in Contextual POI Recommendation Framework (2406.03109v3)

Published 5 Jun 2024 in cs.IR

Abstract: Point-of-interest (POI) recommendation considers spatio-temporal factors like distance, peak hours, and user check-ins. Given their influence on both consumer experience and POI business, it's crucial to consider fairness from multiple perspectives. Unfortunately, these systems often provide less accurate recommendations to inactive users and less exposure to unpopular POIs. This paper develops a post-filter method that includes provider and consumer fairness in existing models, aiming to balance fairness metrics like item exposure with performance metrics such as precision and distance. Experiments show that a linear scoring model for provider fairness in re-scoring items offers the best balance between performance and long-tail exposure, sometimes without much precision loss. Addressing consumer fairness by recommending more popular POIs to inactive users increased precision in some models and datasets. However, combinations that reached the Pareto front of consumer and provider fairness resulted in the lowest precision values, highlighting that tradeoffs depend greatly on the model and dataset.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.