Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Towards Federated Domain Unlearning: Verification Methodologies and Challenges (2406.03078v1)

Published 5 Jun 2024 in cs.LG and cs.AI

Abstract: Federated Learning (FL) has evolved as a powerful tool for collaborative model training across multiple entities, ensuring data privacy in sensitive sectors such as healthcare and finance. However, the introduction of the Right to Be Forgotten (RTBF) poses new challenges, necessitating federated unlearning to delete data without full model retraining. Traditional FL unlearning methods, not originally designed with domain specificity in mind, inadequately address the complexities of multi-domain scenarios, often affecting the accuracy of models in non-targeted domains or leading to uniform forgetting across all domains. Our work presents the first comprehensive empirical study on Federated Domain Unlearning, analyzing the characteristics and challenges of current techniques in multi-domain contexts. We uncover that these methods falter, particularly because they neglect the nuanced influences of domain-specific data, which can lead to significant performance degradation and inaccurate model behavior. Our findings reveal that unlearning disproportionately affects the model's deeper layers, erasing critical representational subspaces acquired during earlier training phases. In response, we propose novel evaluation methodologies tailored for Federated Domain Unlearning, aiming to accurately assess and verify domain-specific data erasure without compromising the model's overall integrity and performance. This investigation not only highlights the urgent need for domain-centric unlearning strategies in FL but also sets a new precedent for evaluating and implementing these techniques effectively.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.