Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Towards Detecting LLMs Hallucination via Markov Chain-based Multi-agent Debate Framework (2406.03075v1)

Published 5 Jun 2024 in cs.CL

Abstract: The advent of LLMs has facilitated the development of natural language text generation. It also poses unprecedented challenges, with content hallucination emerging as a significant concern. Existing solutions often involve expensive and complex interventions during the training process. Moreover, some approaches emphasize problem disassembly while neglecting the crucial validation process, leading to performance degradation or limited applications. To overcome these limitations, we propose a Markov Chain-based multi-agent debate verification framework to enhance hallucination detection accuracy in concise claims. Our method integrates the fact-checking process, including claim detection, evidence retrieval, and multi-agent verification. In the verification stage, we deploy multiple agents through flexible Markov Chain-based debates to validate individual claims, ensuring meticulous verification outcomes. Experimental results across three generative tasks demonstrate that our approach achieves significant improvements over baselines.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.