Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Simplification of Risk Averse POMDPs with Performance Guarantees (2406.03000v2)

Published 5 Jun 2024 in cs.AI

Abstract: Risk averse decision making under uncertainty in partially observable domains is a fundamental problem in AI and essential for reliable autonomous agents. In our case, the problem is modeled using partially observable Markov decision processes (POMDPs), when the value function is the conditional value at risk (CVaR) of the return. Calculating an optimal solution for POMDPs is computationally intractable in general. In this work we develop a simplification framework to speedup the evaluation of the value function, while providing performance guarantees. We consider as simplification a computationally cheaper belief-MDP transition model, that can correspond, e.g., to cheaper observation or transition models. Our contributions include general bounds for CVaR that allow bounding the CVaR of a random variable X, using a random variable Y, by assuming bounds between their cumulative distributions. We then derive bounds for the CVaR value function in a POMDP setting, and show how to bound the value function using the computationally cheaper belief-MDP transition model and without accessing the computationally expensive model in real-time. Then, we provide theoretical performance guarantees for the estimated bounds. Our results apply for a general simplification of a belief-MDP transition model and support simplification of both the observation and state transition models simultaneously.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets