Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 43 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

CAMEL. II. A 3D Coronal Mass Ejection Catalog Based on Coronal Mass Ejection Automatic Detection with Deep Learning (2406.02946v1)

Published 5 Jun 2024 in astro-ph.SR

Abstract: Coronal mass ejections (CMEs) are major drivers of geomagnetic storms, which may cause severe space weather effects. Automating the detection, tracking, and three-dimensional (3D) reconstruction of CMEs is important for operational predictions of CME arrivals. The COR1 coronagraphs on board the Solar Terrestrial Relations Observatory spacecraft have facilitated extensive polarization observations, which are very suitable for the establishment of a 3D CME system. We have developed such a 3D system comprising four modules: classification, segmentation, tracking, and 3D reconstructions. We generalize our previously pretrained classification model to classify COR1 coronagraph images. Subsequently, as there are no publicly available CME segmentation data sets, we manually annotate the structural regions of CMEs using Large Angle and Spectrometric Coronagraph C2 observations. Leveraging transformer-based models, we achieve state-of-the-art results in CME segmentation. Furthermore, we improve the tracking algorithm to solve the difficult separation task of multiple CMEs. In the final module, tracking results, combined with the polarization ratio technique are used to develop the first single-view 3D CME catalog without requiring manual mask annotation. Our method provides higher precision in automatic 2D CME catalog and more reliable physical parameters of CMEs, including 3D propagation direction and speed. The aforementioned 3D CME system can be applied to any coronagraph data with the capability of polarization measurements.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: