Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
9 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Addressing Index Collapse of Large-Codebook Speech Tokenizer with Dual-Decoding Product-Quantized Variational Auto-Encoder (2406.02940v1)

Published 5 Jun 2024 in cs.SD and eess.AS

Abstract: VQ-VAE, as a mainstream approach of speech tokenizer, has been troubled by index collapse'', where only a small number of codewords are activated in large codebooks. This work proposes product-quantized (PQ) VAE with more codebooks but fewer codewords to address this problem and build large-codebook speech tokenizers. It encodes speech features into multiple VQ subspaces and composes them into codewords in a larger codebook. Besides, to utilize each VQ subspace well, we also enhance PQ-VAE via a dual-decoding training strategy with the encoding and quantized sequences. The experimental results demonstrate that PQ-VAE addressesindex collapse" effectively, especially for larger codebooks. The model with the proposed training strategy further improves codebook perplexity and reconstruction quality, outperforming other multi-codebook VQ approaches. Finally, PQ-VAE demonstrates its effectiveness in language-model-based TTS, supporting higher-quality speech generation with larger codebooks.

Citations (3)

Summary

We haven't generated a summary for this paper yet.