Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Private Stochastic Convex Optimization with Heavy Tails: Near-Optimality from Simple Reductions (2406.02789v1)

Published 4 Jun 2024 in cs.DS, cs.CR, cs.LG, and stat.ML

Abstract: We study the problem of differentially private stochastic convex optimization (DP-SCO) with heavy-tailed gradients, where we assume a $k{\text{th}}$-moment bound on the Lipschitz constants of sample functions rather than a uniform bound. We propose a new reduction-based approach that enables us to obtain the first optimal rates (up to logarithmic factors) in the heavy-tailed setting, achieving error $G_2 \cdot \frac 1 {\sqrt n} + G_k \cdot (\frac{\sqrt d}{n\epsilon}){1 - \frac 1 k}$ under $(\epsilon, \delta)$-approximate differential privacy, up to a mild $\textup{polylog}(\frac{1}{\delta})$ factor, where $G_22$ and $G_kk$ are the $2{\text{nd}}$ and $k{\text{th}}$ moment bounds on sample Lipschitz constants, nearly-matching a lower bound of [Lowy and Razaviyayn 2023]. We further give a suite of private algorithms in the heavy-tailed setting which improve upon our basic result under additional assumptions, including an optimal algorithm under a known-Lipschitz constant assumption, a near-linear time algorithm for smooth functions, and an optimal linear time algorithm for smooth generalized linear models.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.