Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Multi-layer Learnable Attention Mask for Multimodal Tasks (2406.02761v1)

Published 4 Jun 2024 in cs.CV, cs.AI, cs.LG, and cs.MM

Abstract: While the Self-Attention mechanism in the Transformer model has proven to be effective in many domains, we observe that it is less effective in more diverse settings (e.g. multimodality) due to the varying granularity of each token and the high computational demands of lengthy sequences. To address the challenges, we introduce the Learnable Attention Mask (LAM), strategically designed to globally regulate attention maps and prioritize critical tokens within the sequence. Leveraging the Self-Attention module in a BERT-like transformer network, our approach adeptly captures associations between tokens. The extension of the LAM to a multi-layer version accommodates the varied information aspects embedded at each layer of the Transformer network. Comprehensive experimental validation on various datasets, such as MADv2, QVHighlights, ImageNet 1K, and MSRVTT, demonstrates the efficacy of the LAM, exemplifying its ability to enhance model performance while mitigating redundant computations. This pioneering approach presents a significant advancement in enhancing the understanding of complex scenarios, such as in movie understanding.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube