Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 145 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Efficient Leverage Score Sampling for Tensor Train Decomposition (2406.02749v2)

Published 4 Jun 2024 in cs.DS

Abstract: Tensor Train~(TT) decomposition is widely used in the machine learning and quantum physics communities as a popular tool to efficiently compress high-dimensional tensor data. In this paper, we propose an efficient algorithm to accelerate computing the TT decomposition with the Alternating Least Squares (ALS) algorithm relying on exact leverage scores sampling. For this purpose, we propose a data structure that allows us to efficiently sample from the tensor with time complexity logarithmic in the tensor size. Our contribution specifically leverages the canonical form of the TT decomposition. By maintaining the canonical form through each iteration of ALS, we can efficiently compute (and sample from) the leverage scores, thus achieving significant speed-up in solving each sketched least-square problem. Experiments on synthetic and real data on dense and sparse tensors demonstrate that our method outperforms SVD-based and ALS-based algorithms.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: