Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Differentially private exact recovery for stochastic block models (2406.02644v1)

Published 4 Jun 2024 in cs.CR, cs.AI, and cs.DS

Abstract: Stochastic block models (SBMs) are a very commonly studied network model for community detection algorithms. In the standard form of an SBM, the $n$ vertices (or nodes) of a graph are generally divided into multiple pre-determined communities (or clusters). Connections between pairs of vertices are generated randomly and independently with pre-defined probabilities, which depend on the communities containing the two nodes. A fundamental problem in SBMs is the recovery of the community structure, and sharp information-theoretic bounds are known for recoverability for many versions of SBMs. Our focus here is the recoverability problem in SBMs when the network is private. Under the edge differential privacy model, we derive conditions for exact recoverability in three different versions of SBMs, namely Asymmetric SBM (when communities have non-uniform sizes), General Structure SBM (with outliers), and Censored SBM (with edge features). Our private algorithms have polynomial running time w.r.t. the input graph's size, and match the recovery thresholds of the non-private setting when $\epsilon\rightarrow\infty$. In contrast, the previous best results for recoverability in SBMs only hold for the symmetric case (equal size communities), and run in quasi-polynomial time, or in polynomial time with recovery thresholds being tight up to some constants from the non-private settings.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.