Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Know Your Neighborhood: General and Zero-Shot Capable Binary Function Search Powered by Call Graphlets (2406.02606v2)

Published 2 Jun 2024 in cs.CR, cs.AI, cs.IR, and cs.LG

Abstract: Binary code similarity detection is an important problem with applications in areas such as malware analysis, vulnerability research and license violation detection. This paper proposes a novel graph neural network architecture combined with a novel graph data representation called call graphlets. A call graphlet encodes the neighborhood around each function in a binary executable, capturing the local and global context through a series of statistical features. A specialized graph neural network model operates on this graph representation, learning to map it to a feature vector that encodes semantic binary code similarities using deep-metric learning. The proposed approach is evaluated across five distinct datasets covering different architectures, compiler tool chains, and optimization levels. Experimental results show that the combination of call graphlets and the novel graph neural network architecture achieves comparable or state-of-the-art performance compared to baseline techniques across cross-architecture, mono-architecture and zero shot tasks. In addition, our proposed approach also performs well when evaluated against an out-of-domain function inlining task. The work provides a general and effective graph neural network-based solution for conducting binary code similarity detection.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.